Worked Examples with Integrals
Prepared by Professor Antonino De Martino (Polytechnic University of Milan) and Dr. Luana Manfredini.
Basic Integral Formulas
Indefinite Integrals
\(\int k \, dx = kx + c\) \(\int x^\alpha \, dx = \frac{x^{\alpha +1}}{\alpha +1} + c\) \(\int \frac{1}{x} \, dx = \log |x| + c\) \(\int a^{kx} \, dx = \frac{a^{kx}}{k \log a} + c\) \(\int (f(x))^\alpha f'(x) \, dx = \frac{(f(x))^{\alpha +1}}{\alpha +1} + c\) \(\int \frac{f'(x)}{f(x)} \, dx = \log|f(x)| + c\) \(\int a^{f(x)} f'(x) \, dx = \frac{a^{f(x)}}{\log a} + c\)
Trigonometric and Hyperbolic Functions
\[\int \cos x \, dx = \sin x + c\] \[\int \sin x \, dx = -\cos x + c\] \[\int f'(x) \cos f(x) \, dx = \sin f(x) + c\] \[\int f'(x) \sin f(x) \, dx = -\cos f(x) + c\] \[\int \frac{1}{\cos^2 x} \, dx = \tan x + c\] \[\int \frac{1}{\sin^2 x} \, dx = -\cot x + c\] \[\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin x + c\] \[\int \frac{1}{1 + x^2} \, dx = \arctan x + c\] \[\int \frac{f'(x)}{1 + f(x)^2} \, dx = \arctan f(x) + c\] \[\int \cosh x \, dx = \sinh x + c\] \[\int \sinh x \, dx = \cosh x + c\]Useful Trig Identities
\(\cos^2 x = \frac{1 + \cos(2x)}{2}\) \(\sin^2 x = \frac{1 - \cos(2x)}{2}\)
Integration Techniques
Integration by parts:
\[\int f(x) g'(x) \, dx = f(x)g(x) - \int f'(x) g(x) \, dx\]Substitution rule:
\[\int f(x) \, dx = \int f(g(t)) g'(t) \, dt \quad \text{with } x = g(t)\]Notable Improper Integrals
- If ( \alpha > 0 ):
- If ( \alpha > 0 ):
- If ( \alpha > 1 ):
Exercises
Exercise 1
Evaluate the integral:
\[\int_{\frac{1}{e}}^e \frac{\log(|\log x|)}{x} \, dx\]Exercise 2
Evaluate the integral:
\[\int \frac{1}{\sin^2 x \cos^2 x} \, dx\]Exercise 3
Evaluate the definite integral:
\[\int_{-1}^{1} \sqrt{1 - x^2} \, dx\]Exercise 4
Evaluate the definite integral:
\[\int_{-1}^{1} \frac{1}{\sqrt{4 - x^2}} \, dx\]Exercise 5
Evaluate the indefinite integral:
\[\int \frac{x^2}{x^2 + 2} \, dx\]Exercise 6
Evaluate the indefinite integral:
\[\int \frac{1}{\sin x} \, dx\]Exercise 7
Evaluate the definite integral:
\[\int_{-2}^{2} \sqrt{4 - x^2} \, dx\]Exercise 8
Evaluate the indefinite integral:
\[\int \sin x \, e^x \, dx\]Exercise 9
Evaluate the definite integral:
\[\int_0^1 e^{2x} \log(1 + e^x) \, dx\]Exercise 10
Evaluate the definite integral:
\(\int_1^e \sin(\log x) \, dx\)
Solutions
Exercise 1
Evaluate the integral:
\[\int_{\frac{1}{e}}^e \frac{\log(|\log x|)}{x} \, dx\]Solution:
We split the integral at the point where the argument of the logarithm changes sign:
\[\int_{\frac{1}{e}}^e \frac{\log(|\log x|)}{x} \, dx = \int_{\frac{1}{e}}^1 \frac{\log(-\log x)}{x} \, dx + \int_1^e \frac{\log(\log x)}{x} \, dx\]In the first part, let
\[t = -\log x, \quad dt = -\frac{dx}{x}\]Then:
\[\int_{\frac{1}{e}}^1 \frac{\log(-\log x)}{x} \, dx = - \int_1^0 \log t \, dt = \int_0^1 \log t \, dt\]For the second part, let
\[t = \log x, \quad dt = \frac{dx}{x}\]So:
\[\int_1^e \frac{\log(\log x)}{x} \, dx = \int_0^1 \log t \, dt\]Therefore:
\[\int_{\frac{1}{e}}^e \frac{\log(|\log x|)}{x} \, dx = 2 \int_0^1 \log t \, dt\]Using integration by parts:
\[\int_0^1 \log t \, dt = \lim_{a \to 0^+} \left( t \log t - t \right)\bigg|_a^1 = \lim_{a \to 0^+} \left( -1 - a \log a + a \right) = -1\]Thus:
\[\int_{\frac{1}{e}}^e \frac{\log(|\log x|)}{x} \, dx = -2\]Exercise 2
Evaluate the integral:
\[\int \frac{1}{\sin^2 x \cos^2 x} \, dx\]Solution:
We use the identity:
\[\sin^2 x + \cos^2 x = 1\]Then:
\[\frac{1}{\sin^2 x \cos^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}\]So:
\[\int \frac{1}{\sin^2 x \cos^2 x} \, dx = \int \frac{1}{\cos^2 x} \, dx + \int \frac{1}{\sin^2 x} \, dx = \tan x - \cot x + c\]Exercise 3
Evaluate the definite integral:
\[\int_{-1}^{1} \sqrt{1 - x^2} \, dx\]Solution:
Let
\[x = \sin t, \quad dx = \cos t \, dt\]Then:
\[\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \, dt\]Use the identity:
\[\cos^2 t = \frac{1 + \cos(2t)}{2}\]So:
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} \, dt = \left( \frac{t}{2} + \frac{\sin(2t)}{4} \right)\bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi}{2}\]Exercise 4
Evaluate the definite integral:
\[\int_{-1}^{1} \frac{1}{\sqrt{4 - x^2}} \, dx\]Solution:
We write:
\[\int_{-1}^{1} \frac{1}{\sqrt{4 - x^2}} \, dx = \int_{-1}^{1} \frac{1}{2 \sqrt{1 - \left( \frac{x}{2} \right)^2}} \, dx\]Let
\[t = \frac{x}{2}\]Then:
\[\int_{-1}^{1} \frac{1}{\sqrt{4 - x^2}} \, dx = 2 \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - t^2}} \, dt = 2 \arcsin t \bigg|_0^{\frac{1}{2}} = \frac{\pi}{3}\]Exercise 5
Evaluate the indefinite integral:
\[\int \frac{x^2}{x^2 + 2} \, dx\]Solution:
We rewrite the numerator:
\[\int \frac{x^2 + 2 - 2}{x^2 + 2} \, dx = \int 1 \, dx - \int \frac{2}{x^2 + 2} \, dx\]Now:
\[\int \frac{2}{x^2 + 2} \, dx = \int \frac{1}{\left( \frac{x}{\sqrt{2}} \right)^2 + 1} \, dx\]Let
\[t = \frac{x}{\sqrt{2}}, \quad dt = \frac{dx}{\sqrt{2}}\]Then:
\[\sqrt{2} \int \frac{1}{1 + t^2} \, dt = \sqrt{2} \arctan t + c\]So the result is:
\[x - \sqrt{2} \arctan\left( \frac{x}{\sqrt{2}} \right) + c\]Exercise 6
Evaluate the indefinite integral:
\[\int \frac{1}{\sin x} \, dx\]Solution:
Using the identity:
\[\int \frac{1}{\sin x} \, dx = \log \left| \tan \frac{x}{2} \right| + c\]Exercise 7
Evaluate the definite integral:
\[\int_{-2}^{2} \sqrt{4 - x^2} \, dx\]Solution:
By symmetry:
\[\int_{-2}^{2} \sqrt{4 - x^2} \, dx = 2 \int_0^2 \sqrt{4 - x^2} \, dx\]Let
\[x = 2 \sin t, \quad dx = 2 \cos t \, dt\]Then:
\[8 \int_0^{\frac{\pi}{2}} \cos^2 t \, dt = 8 \left( \frac{t}{2} + \frac{\sin(2t)}{4} \right) \bigg|_0^{\frac{\pi}{2}} = 2\pi\]Exercise 8
Evaluate the indefinite integral:
\[\int \sin x \, e^x \, dx\]Solution:
Integration by parts twice:
Let
\[I = \int \sin x \, e^x \, dx\]Then:
\[I = \sin x \, e^x - \int e^x \cos x \, dx\]and
\[\int e^x \cos x \, dx = e^x \cos x + I\]So:
\[2I = e^x (\sin x - \cos x)\]and therefore:
\[\int \sin x \, e^x \, dx = \frac{e^x (\sin x - \cos x)}{2} + c\]Exercise 9
Evaluate the definite integral:
\[\int_0^1 e^{2x} \log(1 + e^x) \, dx\]Solution:
Let
\[t = e^x, \quad dx = \frac{dt}{t}\]Bounds: when ( x = 0 ), ( t = 1 ); when ( x = 1 ), ( t = e )
The integral becomes:
\[\int_1^e t \log(1 + t) \, dt\]Use integration by parts:
\[\int_1^e t \log(1 + t) \, dt = \frac{t^2}{2} \log(1 + t) \bigg|_1^e - \frac{1}{2} \int_1^e \frac{t^2}{1 + t} \, dt\]Divide the integrand:
\[\frac{t^2}{1 + t} = t - 1 + \frac{1}{1 + t}\]Then:
\[\int_1^e \frac{t^2}{1 + t} \, dt = \left( \frac{t^2}{2} - t + \log(1 + t) \right) \bigg|_1^e\]Putting it all together:
\[\int_0^1 e^{2x} \log(1 + e^x) \, dx = \frac{e^2}{2} \log(1 + e) - \frac{e^2}{4} + \frac{e}{2} - \frac{1}{4} - \frac{\log(1 + e)}{2}\]Exercise 10
Evaluate the definite integral:
\[\int_1^e \sin(\log x) \, dx\]Solution:
We integrate by parts:
Let:
\[u = \sin(\log x), \quad dv = dx\]Then:
\[\int_1^e \sin(\log x) \, dx = x \sin(\log x) \Big|_1^e - \int_1^e x \cdot \frac{d}{dx}[\sin(\log x)] \cdot \frac{1}{x} \, dx\]We compute:
\[\frac{d}{dx}[\sin(\log x)] = \frac{1}{x} \cos(\log x)\]So the integral becomes:
\[e \sin 1 - \int_1^e \cos(\log x) \, dx\]Now we integrate by parts again:
Let:
\[\int_1^e \cos(\log x) \, dx = x \cos(\log x) \Big|_1^e - \int_1^e \frac{1}{x} \cdot (-\sin(\log x)) \cdot x \, dx = e \cos 1 - \int_1^e \sin(\log x) \, dx\]Putting all together:
\[\int_1^e \sin(\log x) \, dx = e \sin 1 - \left( e \cos 1 - \int_1^e \sin(\log x) \, dx \right)\]Simplifying:
\[2 \int_1^e \sin(\log x) \, dx = e(\sin 1 - \cos 1) + 1\]Therefore:
\[\int_1^e \sin(\log x) \, dx = \frac{e(\sin 1 - \cos 1)}{2} + \frac{1}{2}\]