Hôpital’s Theorem
Let f, g be two functions defined in a neighborhood of c, except possibly at c, such that
\[\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = L,\]with L = 0 or L = +∞ or L = −∞.
If f and g are differentiable in a neighborhood of c, except possibly at c, with g′ ≠ 0, and if the following limit exists (finite or infinite):
then also
\[\lim_{x \to c} \frac{f(x)}{g(x)}\]exists and equals the previous one.
Exercises
Ex 1.
\[\lim_{x \to 0}\frac{e^{x^{x}}-e}{x}.\]Solution
Indeterminate form 0/0. Apply Hôpital:
So
\[\lim_{x \to 0}\frac{e^{x^{x}}-e}{x} \overset{H}{=} \lim_{x \to 0} (\log x+1)x^{x} e^{x^x} = -\infty .\]Indeed,
\[\lim_{x \to 0} x^x = e^0 = 1.\]Ex 2.
\[\lim_{x \to 0}\Bigl(\frac{\sin x}{x}\Bigr)^{1/x^{2}}.\]Solution
\[\lim_{x \to 0}\Bigl(\frac{\sin x}{x}\Bigr)^{1/x^{2}} = \lim_{x \to 0} e^{\frac{\log(\sin x/x)}{x^2}} = e^{-1/6}.\]Ex 3.
\[\lim_{x \to 0}\frac{e^{\sin x}-\cos x}{e^{\cos x}-e\log(x+e)} .\]Solution
Indeterminate form 0/0:
Ex 4.
\[\lim_{x \to -1}\frac{e^{\sqrt{1-3x}}-e^{\sqrt{3-x}}}{e^{x}-e^{2x+1}} .\]Solution
\[\lim_{x \to -1}\frac{e^{\sqrt{1-3x}}-e^{\sqrt{3-x}}}{e^{x}-e^{2x+1}} \overset{H}{=} \frac{-\tfrac{3}{4}e^{2}+\tfrac{e^{2}}{4}}{\tfrac{1}{e}-\tfrac{2}{e}} = \frac{e^3}{2}.\]Ex 5.
\[\lim_{x \to 1^{-}} \log(x)\log(1-x).\]Solution
\[\lim_{x \to 1^{-}} \log(x)\log(1-x) = \lim_{x \to 1^{-}} \frac{\log(1-x)}{1/\log x} \overset{H}{=} \lim_{x \to 1^{-}} \frac{-\tfrac{1}{1-x}}{-1/(x \log^2 x)} = 0.\]Ex 6.
\[\lim_{x \to 3^{+}}\frac{\sqrt{x}-\sqrt{3}+\sqrt{x-3}}{\sqrt{x^{2}-9}} .\]Solution
\[\lim_{x \to 3^{+}}\frac{\sqrt{x}-\sqrt{3}+\sqrt{x-3}}{\sqrt{x^{2}-9}} = \frac{1}{\sqrt{6}} .\]Indeed,
\[\lim_{x \to 3^+} \frac{\sqrt{x}-\sqrt{3}}{\sqrt{x-3}} \overset{H}{=} \lim_{x \to 3^+} \frac{1/(2\sqrt{x})}{1/(2\sqrt{x-3})} = 0.\]Ex 7.
\[\lim_{x \to 0^{+}}\frac{x^{2}-\arctan(x^{2})}{x(1-\cos x)^{3}} .\]Solution
\[\lim_{x \to 0^{+}}\frac{x^{2}-\arctan(x^{2})}{x(1-\cos x)^{3}} \overset{H}{=} \lim_{x \to 0^+} \frac{2x - \tfrac{2x}{1+x^4}}{(1-\cos x)^3+3x(1-\cos x)^2\sin x} = +\infty .\]Ex 8.
\[\lim_{x \to 0}\frac{e^{x}-\cos x-\sin x}{e^{x^{2}}-e^{x^{3}}} .\]Solution
Taylor near 0:
So numerator ∼ x² + x³/6, denominator ∼ x² − x³.
Hence limit = 1.
Ex 9.
\[\lim_{x \to 0}\frac{1-\cos x+\log(\cos x)}{x^{4}} .\]Solution
Expansions:
So numerator ∼ −⅛x⁴.
\[\lim_{x \to 0}\frac{1-\cos x+\log(\cos x)}{x^4} = -\tfrac{1}{8}.\]Ex 10.
\[\lim_{x \to 0}\frac{e^{x^{2}}-\cos^{2}x}{\sin^{2}x}.\]Solution (two methods)
By Hôpital:
\[\lim_{x \to 0}\frac{e^{x^{2}}-\cos^{2}x}{\sin^{2}x} \overset{H}{=} \lim_{x \to 0}\frac{2xe^{x^2}+2\cos x \sin x}{2\cos x \sin x} = \lim_{x \to 0} \frac{x}{\sin x}\cdot\frac{e^{x^2}}{\cos x} +1 = 2.\]By Taylor:
\[e^{x^2}=1+x^2+o(x^2), \quad \cos^2 x = 1-x^2+o(x^2).\]So numerator ∼ 2x², denominator ∼ x², ratio = 2.