Theoretical Recall
Substitution rule:
If $x=g(t)$ is a differentiable substitution, then
\[\int f(x)\,dx = \int f(g(t)) g'(t)\, dt.\]Common strategies:
- Simplify radicals by trigonometric substitution ($x=\sin t$, $x=\tan t$).
- Linear substitutions to reduce shifts/scaling.
- Exponential/logarithmic substitutions to handle $\log$, $e^x$, rational forms.
Author’s note: Always transform both the function and the differential $dx$ consistently.
Exercises
Exercise 1
Evaluate \(\int (2x+1)^5 \, dx.\)
Solution:
Let $u=2x+1$, $du=2dx$, $dx=\tfrac{1}{2}du$.
Back-substitute: $(2x+1)^6/12+C$.
Final Result: \(\int (2x+1)^5 dx = \frac{(2x+1)^6}{12}+C\)
Exercise 2
Evaluate \(\int \frac{1}{x\log x}\, dx, \quad x>1.\)
Solution:
Let $u=\log x$, $du=\tfrac{1}{x}dx$.
Final Result: \(\int \frac{1}{x\log x} dx = \log(\log x)+C\)
Exercise 3
Evaluate \(\int \frac{x}{1+x^2}\, dx.\)
Solution:
Let $u=1+x^2$, $du=2x dx$.
Final Result: \(\int \frac{x}{1+x^2} dx = \tfrac{1}{2}\log(1+x^2)+C\)
Exercise 4
Evaluate \(\int \frac{1}{\sqrt{1-x^2}} dx.\)
Solution:
Substitute $x=\sin t$, $dx=\cos t dt$.
Back-substitute: $\arcsin x + C$.
Final Result: \(\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C\)
Exercise 5
Evaluate \(\int \frac{1}{x^2+1} dx.\)
Solution:
Let $x=\tan t$, $dx=\sec^2 t dt$, $1+x^2=\sec^2 t$.
Back-substitute: $\arctan x + C$.
Final Result: \(\int \frac{1}{x^2+1} dx = \arctan x + C\)
Exercise 6
Evaluate \(\int \frac{1}{\sqrt{x^2+4}} dx.\)
Solution:
Substitute $x=2\tan t$, $dx=2\sec^2 t dt$.
So integral:
\(\int \frac{2\sec^2 t}{2\sec t} dt = \int \sec t dt.\)
Result: $\log | \sec t+\tan t | +C$. Back-substitute $t=\arctan(x/2)$. |
Final Result: \(\int \frac{1}{\sqrt{x^2+4}} dx = \log\!\left|\frac{x+\sqrt{x^2+4}}{2}\right|+C\)
Exercise 7
Evaluate \(\int \frac{1}{x^2-1} dx.\)
Solution:
Use partial fraction substitution:
\(\frac{1}{x^2-1}=\tfrac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right).\)
Then integrate directly.
Final Result: \(\int \frac{1}{x^2-1} dx = \tfrac{1}{2}\log\!\left|\frac{x-1}{x+1}\right|+C\)
Exercise 8
Evaluate \(\int \frac{1}{\sqrt{x^2-1}} dx, \quad x>1.\)
Solution:
Set $x=\cosh t$, $dx=\sinh t dt$, $\sqrt{x^2-1}=\sinh t$.
Back-substitute $t=\operatorname{arcosh}(x)=\log(x+\sqrt{x^2-1})$.
Final Result: \(\int \frac{1}{\sqrt{x^2-1}} dx = \log(x+\sqrt{x^2-1})+C\)
Exercise 9
Evaluate \(\int \sqrt{1+x^2}\, dx.\)
Solution:
Set $x=\sinh t$, $dx=\cosh t dt$.
Use identity $\cosh^2 t=\tfrac{1}{2}(\cosh 2t+1)$.
Integral $=\tfrac{1}{4}\sinh 2t+\tfrac{1}{2}t+C$.
Back-substitute $t=\operatorname{arsinh}(x)$.
Final Result: \(\int \sqrt{1+x^2}\, dx = \tfrac{1}{2}\left(x\sqrt{1+x^2}+\operatorname{arsinh}(x)\right)+C\)
Exercise 10
Evaluate \(\int \frac{1}{x\sqrt{x^2-1}} dx, \quad x>1.\)
Solution:
Substitute $x=\sec t$, $dx=\sec t\tan t dt$.
Back-substitute: $t=\operatorname{arcsec}(x)$.
Final Result: \(\int \frac{1}{x\sqrt{x^2-1}} dx = \operatorname{arcsec}(x)+C\)