Quadratic Equations

• Introduction to Quadratic Equations

- Types of Equations:
 - Pure
 - Incomplete
 - Perfect Squares
 - Special Trinomials

- Solving Techniques:
 - Factoring (ZPP)
 - Completing the Square
 - General Formula
- Discriminant Cases
- Step-by-step Exercises

Quadratic Equations

Standard Form Equation

A quadratic equation in standard form is written as:

$$ax^2 + bx + c = 0.$$

- *a*, *b*, and *c* are real numbers, with $a \neq 0$ (otherwise it wouldn't be a quadratic equation).
- "Standard form" simply means the terms are ordered by degree.

Example

- What is the standard form of $4 + x = -x^2$?
- **2** Is $x^2 + 2 = 0$ in standard form?

Roots of an Equation

Roots of an Equation

To a quadratic equation like $ax^2 + bx + c = 0$, we can associate the polynomial $P(x) = ax^2 + bx + c$. A solution x_0 is a value that, when substituted into P(x), makes the polynomial equal to zero.

Example

Let's consider the equation $x^2 - 4 = 0$, with associated polynomial $P(x) = x^2 - 4$. Substituting x = 2:

$$P(2) = 2^2 - 4 = 4 - 4 = 0$$

Since P(2) = 0, x = 2 is a solution of the equation $x^2 - 4 = 0$.

Question: What are the solutions to $x^2 + 2 = 0$?

Square Root

The square root of a number, such as $\sqrt{9}$, is defined as the positive value whose square gives the original number. For example, $\sqrt{9} = 3$, since $3^2 = 9$. Yet, note that $(-3)^2 = 9$ as well. We define the square root as the positive value only, to keep the operation well-defined and simple.

Solving Quadratic Equations

When solving an equation like $x^2 = 9$, we look for all numbers whose square is 9.

In this case, there are two solutions: x = 3 and x = -3, since both 3^2 and $(-3)^2$ equal 9. Unlike the square root, we consider both the positive and negative roots.

No Real Square Root of Negative Numbers

The square root of a number, such as $\sqrt{81},$ is a number that squared gives the radicand.

However, there is no real square root of a negative number like $\sqrt{-81}$, since no real number squared can yield a negative result.

Quadratic Equations Without Solutions

This means that some quadratic equations have no real solution. For example, the equation $x^2 + 2 = 0$ has no real solutions, because solving it would require computing the square root of -2, which is not a real number.

Number of Solutions of a Quadratic Equation

Number of Solutions

A quadratic equation can have 0, 1, or 2 real solutions:

- 0 if the equation has no real roots,
- 1 if it has a double root,
- 2 if the root involves a positive square root.

Exercise

Determine how many solutions each equation has:

•
$$x^2 = 64$$

• $x^2 = -7$

Quadratic Equations with One Solution

Perfect Square and Single Solution

A quadratic equation has a unique real solution when the associated polynomial is a perfect square of a binomial. This means it can be written as:

$$(x+a)^2$$

The formula is:

$$(x+a)^2 = x^2 + 2ax + a^2$$

If a quadratic is of this form, it has one solution.

Example

Consider the equation $x^2 + 4x + 4 = 0$.

• This polynomial is the square of (x + 2), since:

$$x^2 + 4x + 4 = (x + 2)^2$$

- Since $(x + 2)^2 = 0$, the only solution is x = -2.
- The solution is the value that makes the binomial vanish.

Pure Quadratic Equations

What Are Pure Quadratic Equations?

Pure quadratic equations are a special type of quadratic equation where the linear term is missing. They have the form:

$$ax^2 + c = 0$$

In these equations, the variable appears only as a square. To solve them, just isolate x^2 and find the **two values** that satisfy the equation.

Example: Solving $2x^2 - 8 = 0$

• First, isolate x^2 :

$$2x^2 = 8$$

Then, divide both sides by 2:

$$x^{2} = 4$$

• Finally, find the two numbers whose square is 4:

$$x = -2 \lor x = 2 \quad (x = \pm 2)$$

Exercises

Solve the following equations:

a
$$x^2 - 5 = 0$$

a $4x^2 - 1 = 0$
b $x^2 + \sqrt{2} - \sqrt{3} = 0$
c $x^2 - \sqrt{2} + \sqrt{3} = 0$
c $4x^2 - x(2 - x) + 2(x - 1) = 3$
c $(x - 1)^2 + (x + 1)^2 = (x + 1)(x - 1) + 5$

Which real numbers are equal to their own square?

Solutions to the Exercises

Solutions

- $x^2 5 = 0$ Solution: $x = \pm \sqrt{5}$
- **2** $4x^2 1 = 0$ Solution: $x = \pm \frac{1}{2}$

3
$$x^{2} + \sqrt{2} - \sqrt{3} = 0$$

Solution: $x = \pm \sqrt{\sqrt{3} - \sqrt{2}}$

x² - √2 + √3 = 0
 No real solution, since x² = √2 - √3 is a square equal to a negative number.

3
$$4x^2 - x(2 - x) + 2(x - 1) = 3$$

Simplifies to: $5x^2 - 5 = 3 \Rightarrow 5x^2 = 8 \Rightarrow x = \pm 1$

•
$$(x-1)^2 + (x+1)^2 = (x+1)(x-1) + 5$$

Expands to: $2x^2 + 2 = x^2 + 4 \Rightarrow x^2 = 2$
Solution: $x = \pm \sqrt{2}$

Answer: 0 and 1 are the only real numbers equal to their own square.